158 research outputs found

    Investigation of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting radial Growth on a Rotating Disk

    Get PDF
    The Aeronautical Sciences Project under NASA`s Fundamental Aeronautics Program is extremely interested in the development of novel measurement technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Center`s High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied high-contrast random speckle pattern and imaging the pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.0-im in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be .shifted`. The resulting particle displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential speckle patterns, for future use on the rotating disk, are developed and investigated in the controlled experiment. A range of known shifts are induced on the patterns; reference and data images are acquired before and after the induced shift, respectively, and the images are processed using the cross-correlation algorithms in order to determine the particle displacements. The effectiveness of each pattern at resolving the known shift is evaluated and discussed in order to choose the most suitable pattern to be implemented onto a rotating disk in the Rotordynamics Lab. Although testing on the rotating disk has not yet been performed, the driving principles behind the development of the present optical technique are based upon critical aspects of the future experiment, such as the amount of expected radial growth, disk analysis, and experimental design and are therefore addressed in the paper

    Structural properties in Sr0.61a0.39Nb2O6 in the temperature range 10 K to 500 K investigated by high-resolution neutron powder diffraction and specific heat measurements

    Full text link
    We report high-resolution neutron powder diffraction on Sr0.61Ba0.39Nb2O6, SBN61, in the temperature range 15-500 K. The results indicate that the low-temperature anomalies (T<100K) observed in the dielectric dispersion are due to small changes in the incommensurate modulation of the NbO6-octahedra, as no structural phase transition of the average structure was observed. This interpretation is supported by specific heat measurements, which show no latent heat, but a glass-like behavior at low temperatures. Furthermore we find that the structural changes connected with the ferroelectric phase transition at Tc approx. 350K start already at 200K, explaining the anisotropic thermal expansion in the temperature range 200-300K observed in a recent x-ray diffraction study.Comment: Accepted by PRB (2006

    Progress of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting Radial Growth on a Rotating Disk

    Get PDF
    The Aeronautical Sciences Project under NASA's Fundamental Aeronautics Program is interested in the development of novel measurement technologies, such as optical surface measurements for the in situ health monitoring of critical constituents of the internal flow path. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. The present study, aims to further validate and develop an optical strain measurement technique to measure the radial growth and strain field of an already cracked disk, mimicking the geometry of a sub-scale turbine engine disk, under loaded conditions in the NASA Glenn Research Center's High Precision Rotordynamics Laboratory. The technique offers potential fault detection by imaging an applied high-contrast random speckle pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds (loaded conditions) induces an external load, resulting in a radial growth of the disk of approximately 50.0-m in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be 'shifted'. The resulting particle displacements between the two images is measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. A random particle distribution is adhered onto the surface of the cracked disk and two bench top experiments are carried out to evaluate the technique's ability to measure the induced particle displacements. The disk is shifted manually using a translation stage equipped with a fine micrometer and a hotplate is used to induce thermal growth of the disk, causing the particles to become shifted. For both experiments, reference and test images are acquired before and after the induced shifts, respectively, and then processed using PIV software. The controlled manual translation of the disk resulted in detection of the particle displacements accurate to ~1.75% of full scale and the thermal expansion experiment resulted in successful detection of the disk's thermal growth as compared to the calculated thermal expansion results. After validation of the technique through the induced shift experiments, the technique is implemented in the Rotordynamics Lab for preliminary assessment in a simulated engine environment. The discussion of the findings and plans for future work to improve upon the results are addressed in the paper

    Optical Strain and Crack-Detection Measurements on a Rotating Disk

    Get PDF
    The development of techniques for the in-situ measurement and structural health monitoring of the rotating components in gas turbine engines is of major interest to NASA. As part of this on-going effort, several experiments have been undertaken to develop methods for detecting cracks and measuring strain on rotating turbine engine like disks. Previous methods investigated have included the use of blade tip clearance sensors to detect the presence of cracks by monitoring the change in measured blade tip clearance and analyzing the combined disk-rotor system's vibration response. More recently, an experiment utilizing a novel optical Moir based concept has been conducted on a subscale turbine engine disk to demonstrate a potential strain measurement and crack detection technique. Moir patterns result from the overlap of two repetitive patterns with slightly different spacing. When this technique is applied to a rotating disk, it has the potential to allow for the detection of very small changes in spacing and radial growth in a rotating disk due to a flaw such as a crack. This investigation was a continuation of previous efforts undertaken in 2011 to 2012 to validate this optical concept. The initial demonstration attempted on a subscale turbine engine disk was inconclusive due to the minimal radial growth experienced by the disk during operation. For the present experiment a new subscale Aluminum disk was fabricated and improvements were made to the experimental setup to better demonstrate the technique. A circular reference pattern was laser etched onto a subscale engine disk and the disk was operated at speeds up to 12 000 rpm as a means of optically monitoring the Moir created by the shift in patterns created by the radial growth due the presence of the simulated crack. Testing was first accomplished on a clean defect free disk as a means of acquiring baseline reference data. A notch was then machined in to the disk to simulate a crack and testing was repeated for the purposes of demonstrating the concept. Displacement data was acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the optical data and for validating other sensor based crack detection techniques

    Schlieren System Enhancements at GRC

    Get PDF
    This presentation describes the latest improvements that have been made to the Schlieren systems at the NASA Glenn Research Center. These systems are used for the visualization of flow and shock structures in our wind tunnel test facilities. Improvements have been made to the optics, light sources and knife edges using the latest state-of-the-art technology. The eventual goal of this upgrade work is to improve the sensitivity of the systems so that they can be used to make quantitative flow measurements

    Background-Oriented Schlieren Applications in NASA Glenn Research Center's Ground Test Facilities

    Get PDF
    This is a presentation for an invited session at the 2015 SciTech Conference 53rd AIAA Aerospace Sciences Meeting. The presentation covers the recent applications of Background-Oriented Schlieren in NASA Glenn Research Center's ground test facilities, such as the 8x6 SWT, open jet rig, and AAPL

    Forecasting postoperative delirium in older adult patients with Fast-and-Frugal decision trees

    Get PDF
    Postoperative delirium (POD) is associated with increased complication and mortality rates, particularly among older adult patients. However, guideline recommendations for POD detection and management are poorly implemented. Fast-and-frugal trees (FFTrees), which are simple prediction algorithms, may be useful in this context. We compared the capacity of simple FFTrees with two more complex models—namely, unconstrained classification trees (UDTs) and logistic regression (LogReg)—for the prediction of POD among older surgical patients in the perioperative setting. Models were trained and tested on the European BioCog project clinical dataset. Based on the entire dataset, two different FFTrees were developed for the pre-operative and postoperative settings. Within the pre-operative setting, FFTrees outperformed the more complex UDT algorithm with respect to predictive balanced accuracy, nearing the prediction level of the logistic regression. Within the postoperative setting, FFTrees outperformed both complex models. Applying the best-performing algorithms to the full datasets, we proposed an FFTree using four cues (Charlson Comorbidity Index (CCI), site of surgery, physical status and frailty status) for the pre-operative setting and an FFTree containing only three cues (duration of anesthesia, age and CCI) for the postoperative setting. Given that both FFTrees contained considerably fewer criteria, which can be easily memorized and applied by health professionals in daily routine, FFTrees could help identify patients requiring intensified POD screening

    Structures performance, benefit, cost-study

    Get PDF
    New technology concepts and structural analysis development needs which could lead to improved life cycle cost for future high-bypass turbofans were studied. The NASA-GE energy efficient engine technology is used as a base to assess the concept benefits. Recommended programs are identified for attaining these generic structural and other beneficial technologies

    M\"ossbauer, nuclear inelastic scattering and density functional studies on the second metastable state of Na2[Fe(CN)5NO]\cdot2H2O

    Full text link
    The structure of the light-induced metastable state SII of Na2[Fe(CN)5NO]\cdot2H2O 14 was investigated by transmission M\"ossbauer spectroscopy (TMS) in the temperature range 15 between 85 and 135 K, nuclear inelastic scattering (NIS) at 98 K using synchrotron 16 radiation and density functional theory (DFT) calculations. The DFT and TMS results 17 strongly support the view that the NO group in SII takes a side-on molecular orientation 18 and, further, is dynamically displaced from one eclipsed, via a staggered, to a second 19 eclipsed orientation. The population conditions for generating SII are optimal for 20 measurements by TMS, yet they are modest for accumulating NIS spectra. Optimization 21 of population conditions for NIS measurements is discussed and new NIS experiments on 22 SII are proposed
    corecore